# PUBLIC HEALTH REPORTS 

## CURRENT PREVALENCE OF COMMUNICABLE DISEASES IN THE UNITED STATES ${ }^{1}$

July 12-August 8, 1936

Poliomyelitis.-The outbreak of poliomyelitis that began in Alabama during the early part of July has apparently been confined to that State and adjoining States in the East South Central region. For the 4 weeks ended August 8, Alabama reported 129 cases; Tennessee, 99; Mississippi, 32; and Kentucky, 11-more than onehalf of the total cases occurred in those 4 States. No other State or region reported more than the usual increase that is expected at this season of the year.

The total number of cases reported for the country as a whole was 515 , which was about 35 percent of that reported for the corresponding period in 1935. In that year an epidemic that started in North Carolina reached its peak in the South Atlantic region during this period and had spread into States along the North Atlantic seaboard. In 1934 the cases totaled 1,035 as a result of an epidemic in California and other Western States. In 1933 a minor epidemic was in progress about this time of the year in the North Atlantic regions and a total of 667 cases was reported, while in 1931 a much more severe epidemic was present in the same regions and there were 2,974 cases reported. In 1929 and 1932 the cases for this period totaled 314 and 395, respectively.

The summer rise of poliomyelitis in recent years has reached its peak about the third week in September. This year each region reported the usual increase in this period over the preceding period, but the figures compare favorably with those for this season in recent years when an epidemic was not in progress.

Scarlet fever.-The number of cases of scarlet fever declined about 50 percent from the total for the preceding 4 -week period. The incidence ( 4,442 cases) stood at approximately the same level as last

[^0]year, but it was more than 20 percent above the average for the corresponding period in the years 1930-34, inclusive. Sharp decreases from the preceding period were reported from the West North Central and Mountain and Pacific regions, where the disease has been most prevalent, but in the former region the number of cases was about 35 percent above the high level of last year, while in the latter regions it stood at about last year's level. The incidence in those regions has been the highest in the 8 years for which these data are available. Other regions reported a gradual decline toward the seasonal low level which is usually reached at this season of the year.

Diphtheria.-Tbe incidence of diphtheria continued at a low level. For the 4 weeks ended August 8 the cases totaled 1,111, which was about 80 percent of the number reported for the corresponding period in each of the 2 preceding years. Maine, with 7 cases as against 1 last year, and New York with 110 as against 55, placed the incidence in the North Atlantic regions about 10 percent above that for these States last year. In all other regions the number of cases was the lowest reported for this period in recent years.

Typhoid fever.-During the current 4 -week period 2,058 cases of typhoid fever were reported, as compared with 2,895 last year and 3,760 in 1934. The current figures represented about 60 percent increase over the preceding 4 -week period, but the incidence normally increases sharply at this season. For the country as a whole, the number of cases was the lowest for this period in the 8 years for which these data are available. The situation was very favorable in all sections of the country. The Mountain and Pacific regions reported a slight increase over last year, and the New England and Middle Atlantic sections approximately the same incidence as last year, but in all other regions very significant decreases occurred.

Smallpox.-This disease, which has been unusually prevalent in the Mountain, Pacific, and North Central regions, has dropped to about the normal seasonal expectancy; during the current period the incidence for the country as a whole ( 239 cases) was at approximately the average for recent years. Of the total cases for this period, Montana reported 60; Illinois and Iowa, 38 each; Wisconsin, 24; Missouri and North Dakota, 10 each; and South Dakota and Nebraska, 8 each; more than 80 percent of the total occurred in those 8 States and no other State reported more than 6 cases. In other regions the incidence was somewhat below the seasonal expectancy.

Measles.-The number of cases of measles dropped from approximately 24,000 for the preceding 4 -week period to 6,488 for the 4 weeks ended August 8. The number was less than 60 percent of that for the corresponding period in 1935 and about 65 percent of the
figure for 1934. The current incidence was about 10 percent below the average for the years 1929-33, inclusive, which is a better comparison as the years 1935 and 1934 were both unusually high "measles years."

Influenza.-For the current period the cases of influenza totaled 727, as against $987,1,354$, and 1,043 for the corresponding period in the years 1935, 1934, and 1933, respectively. In all sections of the country the incidence during this period was about at the normal seasonal level.

Meningococcus meningitis.-During the current 4-week period the incidence of meningococcus meningitis ( 287 cases) stood at about the same level as in the corresponding period in 1935. During this period in 1934 and 1933 there were 130 and 147 cases, respectively. In the South Atlantic, South Central, and Mountain and Pacific regions the disease was slightly more prevalent than last year, but in other regions fewer cases were reported. States reporting cases somewhat above the seasonal expectancy were Kentucky (36), New York (35), California and Illinois (21 each), Virginia (18), Pennsylvania (16), and Maryland and West Virginia (10 each).

Mortality, all causes.-The average mortality rate from all causes in large cities for the 4 weeks ended August 8, as reported by the Bureau of the Census, was 11.9 per thousand inhabitants (annual basis). The rates for the separate weeks of the period were 17.0, 11.0, 9.9 , and 9.7. The rate for the week ending July 18 was probably the highest weekly death rate on record for this season of the year; in the following weeks the rates dropped sharply and were more nearly normal.

The sharp increase in the death rate was without doubt due to the extreme heat in the Midwestern States. An examination of the data for the group of 86 large cities shows that during the week of July 18 the death rate in a number of cities was more than five times the normal expectancy. The Weekly Health Index for the week ended July 18 states that "from the standpoint of mortality the heat wave of 1936 is much more severe than the heat wave of 1934." The highest weekly rate for approximately the same 86 cities in 1934 was reported for the week ended July 28 when the rate was 12.3 and the death rates in some cities were twice the expected rates for this season of the year. ${ }^{2}$

The cities of the northern States of the North Central regions showed the greatest excess mortality, particularly those of Minnesota, Wisconsin, and Michigan. The cities most affected in the 1934 heat wave were farther south, particularly in Missouri, Kansas, Nebraska, and Iowa.

[^1]
# time changes in the relative mortality from aUTOMOBLLE ACCIDENTS AMONG CHILDREN IN DIFFERENT GEOGRAPHIC REGIONS OF THE UNITED STATES, 1925-1932 ${ }^{1}$ 

Studies on the Fatal Accidents of Childhood No. 2

By William M. Gafafer, Senior Statistician, United States Public Health Service
In the previous paper (1) of the series the mortality from automobile accidents during the year 1930 was investigated among children in different geographic regions of the United States. It is purposed in this, the second paper, to study certain time changes in the geographic distribution of mortality from the same cause among children of the United States. As in the previous paper, the mortality data are specific for single years of age under 5 , and for the age groups 5-9 and 10-14. The period of time extends from 1925 through 1932. The time period, for which comparable figures are available in published volumes of the Bureau of the Census, and the particular grouping of the older ages are so taken for practical reasons. In the absence of accurate annual population enumerations, the mortality from automobile accidents is measured in terms of relative mortality; that is, in terms of the ratio of the number of fatalities from automobile accidents to the number of fatalities from all accidents. In addition, mortality from automobile accidents is related to the number of registered automobiles and to the number of gallons of gasoline consumed.

For the purposes of this paper the death registration States of 1925, consisting of 40 States and the District of Columbia, have been divided into 4 broad groups, each constituting a geographic region, as follows: A Northeastern (Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and the District of Columbia), a North Central (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, West Virginia, and Wisconsin), a Southeastern (Alabama, Florida, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia) and a Western (California, Colorado, Idaho, Montana, Oregon, Utah, Washington, and Wyoming).

Tables 1 and 1-A, which present the essential data of the study, give the number of deaths from automobile accidents per 100 deaths from all accidents and the number of deaths from automobile accidents for children under 15 years of age, white and colored combined, in different geographic regions of the United States from 1925 through 1932.

[^2]Table 1.-Number of deaths from automobile accidents per 100 deaths from all accidents among children under 15 years of age in different geographic regions of the United States, by age, 1925-32, white and colored combined

NORTHEASTERN

| Year | Age in years |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | $\underset{1}{\text { Under }}$ | 1 | 2 | 3 | 4 | $\underset{5}{\text { Under }}$ | 5 to 9 | 10 to 14 |
| 1925. | 31.5 | 3.6 | 5.6 | 13.2 | 26.1 | 36.4 | 16.7 | 49.5 | 35.0 |
| 1928. | 33.1 | 4.4 | 4.3 | 16.5 | 31.1 | 36.7 | 18.1 | 52.5 | 35.4 |
| 1927. | 36.0 | 6.2 | 9.8 | 16.3 | 37.4 | 39.5 | 22.5 | 52.8 | 36.2 |
| 1928. | 35.1 | 6.9 | 8.5 | 17.5 | 33.8 | 40.7 | 21.5 | 51.4 | 35.8 |
| 1929. | 36. 6 | 3.8 | 8.1 | 24.3 | 37.5 | 45.2 | 24.1 | 51.7 | 36.9 |
| 1930 | 26.0 | 6.1 | 9.3 | 16.7 | 26.8 | 29.6 | 18.4 | 33.7 | 26.1 |
| 1931. | 26.3 | 4.7 | 9.8 | 16.9 | 27.0 | 30.5 | 19.0 | 34.0 | 26.1 |
| 1932...... | 25.3 | 3.7 | 11.6 | 16.0 | 26.4 | 32.2 | 19.3 | 30.9 | 26.3 |

NORTH CENTRAL

| 1925. | 26.3 | 5.0 | 8.2 | 11.4 | 23.4 | 31.8 | 14.5 | 45.0 | 26.8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1926 | 28.0 | 6.2 | 7.1 | 12.2 | 24.1 | 34.9 | 14.7 | 47.5 | 30.9 |
| 1927. | 29.9 | 7.9 | 10.1 | 14.1 | 26.5 | 37.7 | 17.6 | 48.3 | 31.8 |
| 1928. | 31.0 | 6.7 | 10.6 | 16.9 | 34.3 | 38.9 | 19.6 | 48.2 | 33.1 |
| 1929. | 31.6 | 6.7 | 11.5 | 19.8 | 30.9 | 39.1 | 19.4 | 48.9 | 33.9 |
| 1930 | 23.4 | 7.8 | 12.3 | 15.9 | 24.7 | 28.7 | 17.0 | 30.8 | 24.3 |
| 1931 | 23.8 | 8.3 | 11.1 | 14.9 | 24.0 | 31.4 | 17.4 | 31.9 | 24.1 |
| 1932. | 21.3 | 5.3 | 8.2 | 15.3 | 23.8 | 24.2 | 14.5 | 29.3 | 22.4 |

SOUTHEASTERN

| 1925. | 14.7 | 3.8 | 4.1 | 9.4 | 11.0 | 21.1 | 8.5 | 25.9 | 19.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1926. | 14.6 | 3.0 | 3.4 | 8.0 | 10.9 | 20.3 | 7.7 | 26.3 | 19.4 |
| 1927. | 16.4 | 3.0 | 6.4 | 6.4 | 13.0 | 23.2 | 8.9 | 29.1 | 20.2 |
| 1928. | 16.8 | 3.5 | 3.5 | 8.6 | 17.9 | 21.9 | 9.3 | 27.3 | 23.5 |
| 1929. | 19.8 | 4. 5 | 7.5 | 8.9 | 19.5 | 24.3 | 11.4 | 33.3 | 23.6 |
| 1930. | 15.8 | 2.8 | 6.4 | 10.5 | 14.5 | 18.8 | 9.4 | 23.5 | 19.5 |
| 1931. | 16. 2 | 4.2 | 5.4 | 10.6 | 14. 1 | 17.3 | 9.3 | 25.5 | 18.2 |
| 1932 | 14.7 | 2.8 | 6.1 | 11.0 | 16.9 | 18.4 | 9.8 | 22.0 | 15.6 |

WESTERN

| 1925 | 24.8 | 6.7 | 12.1 | 14.1 | 23.3 | 39.5 | 16.9 | 38.0 | 27.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1926 | 25.6 | 10.1 | 10.1 | 10.6 | 23.4 | 43.2 | 16.3 | 40.6 | 25.1 |
| 1927 | 27.0 | 9.3 | 13.0 | 16.7 | 29.2 | 34.5 | 18.8 | 38.3 | 30.4 |
| 1928 | 28.6 | 7.9 | 11.6 | 22.4 | 30.1 | 32.5 | 19.6 | 39.7 | 31.0 |
| 1929. | 30.2 | 9.7 | 19.3 | 19.5 | 28.2 | 37.0 | 20.9 | 40.9 | 37.1 |
| 1930. | 22.7 | 8.3 | 12.1 | 16.3 | 26.3 | 28.0 | 17.1 | 29.9 | 23.6 |
| 1931 | 23.6 | 8.9 | 12.9 | 19.2 | 21.8 | 26.3 | 16.9 | 31.5 | 25.4 |
| 1932 | 20.0 | 7.6 | 11.7 | 14.7 | 23.5 | 22.1 | 15.0 | 27.9 | 20.1 |

Table 1-A.-Number of deaths from automobile accidents among children under 15 years of age in different geographic regions of the United States, by age, 1925-32, white and colored combined

NORTHEASTERN

| Year | Age in years |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\text { ages }}{\text { All }}$ | $\underset{1}{\text { Under }}$ | 1 | 2 | 3 | 4 | $\begin{gathered} \text { Under } \\ 5 \end{gathered}$ | 5 to 9 | 10 to 14 |
| 1925 | 1,888 | 22 | 31 | 63 | 141 | 204 | 461 | 1,007 | 420 |
| 1926 | 1,917 | 27 | 23 | 81 | 163 | 191 | 485 | 1,024 | 408 |
| 1927. | 1,992 | 30. | 43 | 79 | 198 | 196 | 546 | 1,034 | 412 |
| 1928. | 1,939 | 34 | 38 | 77 | 160 | 193 | 502 | 975 | 462 |
| 1929. | 1.908 | 18 | 33 | 97 | 165 | 220 | 533 | 925 | 450 |
| 1930. | 1,741 | 32 | 38 | 82 | 148 | 167 | 467 | 856 | 418 |
| 1931. | 1,775 | 22 | 45 | 85 | 161 | 195 | 508 | 857 | 410 |
| 1932..... | 1,507 | 15 | 48 | 60 | 134 | 177 | 434 | 673 | 400 |

Table 1-A.-Number of deaths from automobile accidents among children under 16 years of age in different geographic regions of the United States, by age, 1925-s8 white and colored combined-Continued

NORTH CENTRAL

| Year | Age in years |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\text { ages }}{\text { All }}$ | $\underset{1}{\text { Under }}$ | 1 | 2 | 8 | 4 | $\underset{5}{\text { Under }}$ | 5 to 9 | 10 to 14 |
| 1925. | 1,528 | 35 | 51 | 56 | 117 | 143 | 402 | 772 | 354 |
| 1926 | 1, 561 | 48 | 41 | 50 | 108 | 138 | 392 | 775 | 894 |
| 1927 | 1,678 | 65 | 60 | 69 | 125 | 164 | 473 | 802 | 403 |
| 1928 | 1,700 | 45 | 64 | 75 | 163 | 169 | 516 | 760 | 424 |
| 1929. | 1,753 | 45 | 67 | 95 | 139 | 156 | 502 | 810 | 441 |
| 1930 | 1,680 | 58 | 77 | 91 | 141 | 152 | 519 | 738 | 423 |
| 1931 | 1,610 | 53 | 68 | 79 | 122 | 170 | 492 | 707 | 411 |
| 1932.. | 1,260 | 30 | 47 | 71 | 109 | 102 | 359 | 547 | 354 |
| SOUTHEASTERN |  |  |  |  |  |  |  |  |  |
| 1925 | 540 | 25 | 16 | 34 | 39 | 62 | 176 | 221 | 143 |
| 1926 | 560 | 20 | 15 | 31 | 37 | 62 | 165 | 246 | 149 |
| 1927. | 602 | 18 | 28 | 21 | 43 | 68 | 176 | 272 | 154 |
| 1928 | 616 | 23 | 14 | 29 | 56 | 61 | 183 | 253 | 180 |
| 1929 | 690 | 24 | 28 | 29 | 59 | 65 | 205 | 305 | 180 |
| 1930 | 656 | 17 | 24 | 38 | 53 | 56 | 188 | 283 | 185 |
| 1931 | 642 | 22 | 21 | 36 | 43 | 50 | 172 | 292 | 178 |
| 1932 | 559 | 15 | 21 | 34 | 54 | 51 | 175 | 233 | 151 |

WESTERN

| 1925. | 386 | 13 | 28 | 22 | 27 | 47 | 135 | 155 | 96 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1928 | 399 | 19 | 20 | 13 | 30 | 35 | 117 | 187 | 95 |
| 1927. | 447 | 18 | 24 | 29 | 40 | 41 | 152 | 179 | 116 |
| 1928 | 471 | 13 | 20 | 33 | 41 | 37 | 144 | 205 | 122 |
| 1929. | 471 | 18 | 39 | 30 | 29 | 44 | 160 | 169 | 142 |
| 1930 | 446 | 18 | 21 | 30 | 41 | 38 | 148 | 182 | 116 |
| 1931 | 482 | 19 | 26 | 30 | 38 | 36 | 149 | 195 | 138 |
| 1932. | 365 | 15 | 25 | 21 | 40 | 23 | 124 | 148 | 98 |

## RELATIVE MÓRTALITY BY AGE, SPECIFIC FOR REGION

With the use of data given in table 1, figure 1 shows the time changes in the relative mortality from automobile accidents from 1925 through 1932, by age, for the different geographic regions. The figure thus shows how the relative mortality at the different ages compares in the same region. It will be observed that the range of the percentages for the Northeastern region has for its minimum, 3.6, and for its maximum, 52.8. The North Central region ranges from 5.0 to 48.9 , the Southeastern from 2.8 to 33.3 , and the Western from 6.7 to 39.5. The range for the Northeastern region is greatest (49.2), and this is immediately followed by the North Central (43.9). The ranges for the Southeastern (30.5) and the Western (32.8) are of similar magnitude, the latter beginning at a bigher level. It will be observed, also, that for the different years the order of the ages in the different regions with respect to relative mortality is remarkably similar, the age group 5 to 9 generally leading and ages under 1 consistently lowest.


Figure 1.-Number of deaths from automobile accidents per 100 deaths from all accidents, by age, in different geographic regions, 1925-32, white and colored combined (logarithmic scale).

RELATIVE MORTALITY BY REGION, SPECIFIC FOR AGE
With the use of data from table 1, figure 2 shows the time changes in the relative mortality from automobile accidents at specific ages for the different regions. While the regions are not similarly ordered at each age, attention must be directed to certain other important observable facts relating to order. With the possible exception of age under 1 year, the Southeastern region shows the lowest relative mortality at each age and for each age group. Furthermore, at ages under 1 and 1 , there is a tendency for the regions to be ordered with respect to decreasing magnitude of relative mortality, as follows: Western, North Central, Northeastern, and Southeastern. Ages 2, 3 , and 4, and the age group 10 to 14 years disclose a definite separation of the regions into 2 groups, the first comprising the Northeastern, North Central, and Western regions, and the second comprising only 1 member, namely, the Southeastern, with relative mortality rates of a lower order of magnitude. The age groups 5 to 9 years and all ages behave similarly with the Northeastern region highest, and followed by the North Central, Western, and Southeastern in decreasing order.

Figure 2 shows, moreover, that the time trends of relative mortality, while generally on different levels, vary with age and region. For ages under 1 year each trend might be represented by a straight line parallel to the time axis, indicating that the relative mortality for infants under 1 year of age has been generally on the same level, neither increasing nor decreasing, for each region during the years 1925-32. For the remaining ages and age groups the pictures are definitely different. At 1 year of age the trend for the Northeastern region increases rapidly; for the other regions the neighborhood of 1929 begins to make itself felt in that the relative mortality increases to that neighborhood and then perceptibly declines. At 2 years of age the trend for the Southeastern region is on the increase while the Northeastern and North Central regions show an increase to 1929 followed by a decrease; the Western region has its peak 1 year earlier. At 3 years of age the trends increase to 1928 or 1929 and decrease thereafter. Finally, at 4 years and for the age groups 5 to 9,10 to 14, and all ages, with the possible exception of the relative mortality at 4 years of age for the Western region, which shows a decrease over the entire period, the trends rise to 1929 and fall subsequently. It is tempting to believe that the introduction or better enforcement of accident prevention laws or possibly the economic depression caused the decline in the trends after 1929. It will be seen later, however, that when a different measure of mortality is employed for children under 15 years of age the uniqueness of the year 1929 vanishes.


Figure 2.-Number of deaths from automobile accidents per 100 deaths from all accidents, by geographic region, at different ages, 1925-32, white and colored combined (logarithmic scale).

## MORTALITY RELATED TO THE NUMBER OF REGISTERED AUTOMOBILES

## AND TO THE GASOLINE CONSUMED

In the preceding section reference was made to the order of the regions as shown in figure 2 for all ages (under 15 years). The Northeastern region led and was followed by the North Central, Western, and Southeastern, respectively. When another measure of mortality is chosen, namely, the number of deaths under 15 years of age per 100,000 registered automobiles, ${ }^{2}$ this order of the regions is disturbed. The changed order is shown graphically in figure 3 (c). It will be observed that the Northeastern region leads to 1931. In 1932 the Southeastern region assumes first place, while the Northeastern, North Central, and Western, respectively, follow. It is important to emphasize that, with the possible exception of the trend for the Southeastern region, which is practically level, the trends for the other regions have declined steadily during 1925-32. This means that the mortality from automobile accidents per 100,000 registered automobiles among children under 15 years of age declined regularly in the Northeastern, North Central, and Western regions during the 8 years under observation.

In the absence of mileage data, the number of deaths from automobile accidents among children under 15 years of age has been related to the number of gallons of gasoline consumed, and this is shown graphically in figure 3 (a). It is seen that the order of the regions is little disturbed by the substitution of gasoline consumed for the number of registered automobiles. The trends of mortality in the first instance, however, are declining more rapidly, and this holds for each region.

Figure 3 (b) shows the increase in the number of gallons of gasoline consumed per automobile in each region during the 8 years 1925-32, and is of considerable interest when compared with the decreasing mortality per 50 million gallons of consumed gasoline shown in figure 3 (a).

## SUMMARY

This, the second paper of a series on the fatal accidents of childhood, deals with time changes in the relative mortality from automobile accidents among children under 15 years of age in different geographic regions of the United States during 1925-32. Relative mortality is defined as the ratio of the number of fatalities from automobile accidents to the number of fatalities from all accidents. In addition, mortality is related to the number of registered automobiles and to the number of gallons of gasoline consumed.

[^3]

Figure 3.-(a) Number of deaths frcm automobile accidents among children under 15 years of age per $50,000,000$ gallons of consumed gasoline, by geographic region, 1925-32, white and colored combined; (b) number of gallons of gasoline consumed per automobile, by geographic region, 1925-32; and (c) number of deaths from automobile accidents among children under 15 years of age per 100,000 registered automobiles, by geographic region, 1925-32, white and colored combined (logarithmic scales).

The death registration States of 1925, consisting of 40 States and the District of Columbia, are divided into 4 geographic regions: A Northwestern, a North Central, a Southeastern, and a Western.

Relative mortality by age, specific for region.-While the ranges of relative mortality for the various ages and age groups considered as a unit differ in the different regions for the period 1925-32, the order of the ages within each unit is similar in the different regions, the age group 5 to 9 years generally leading and the age under 1 year consistently the lowest.

Relative mortality by region, specific for age.-The regions are not similarly ordered at each age with respect to the relative mortality during 1925-32. With the possible exception of age under 1 year, the Southeastern region shows the lowest relative mortality at each age and for each age group. The Western region leads at ages under 1 and 1 year, while for 5 to 9 years and all ages the Northeastern leads. At each of the remaining ages and for the age group 10 to 14 years it is doubtful which region (Northeastern, North Central, or Western) has the highest relative mortality.

The time trends of relative mortality, while generally on different levels, vary with age and region. When all ages under 15 years are combined, for example, the trend for each region rises to 1929 and falls thereafter.

Mortality of children under 15 years of age related to the number of registered automobiles and to the number of gallons of gasoline consumed, 1925-32.-With regard to the trend of the deaths per 100,000 registered automobiles, the Southeastern region shows a level one; the trend for each of the remaining regions, on the other hand, shows a decline.

The trend of the consumption of gasoline per automobile steadily increased in each region during the 8 years. During the same period of time, however, the number of deaths under 15 years of age per 50 million gallons of consumed gasoline declined in each region.

## REFERENCE

(1) Gafafer, W. M.: (1936) Mortality from automobile accidents among childern in different geographic regions of the United States, 1930. Studies on the fatal accidents of childhood no. 1. Pub. Health Rep., 51: 1083-1090 (1936).

## A FURTHER STUDY OF THE FERGUSON FORM BOARD TEST

## By M. J. Pescor, Assistant Surgeon, United States Public Health Service, United States Northeastern Penitentiary, Lewisburg, Pa.

This paper is a sequel to an article published in the Public Health Reports for December 27, 1935 (1). The present study deals with the relationship of the Ferguson Form Board, the Stanford Achievement and the Army Beta Tests. A descriptive account of the first may be found in Ferguson's original article (2), Bronner et al. (3), or in Public Health Bulletin No. 206 (4); a description of the second, in a manual of instructions issued by the copyright owners (5); and of the third, in the manual of Army mental tests (6).

There are two methods of scoring the Ferguson Test. In the original method each board is scored alike, using a $5,4,3,2,1$ ratio, based on the time required to complete each board; the maximum total raw score being 30. In the Shimberg modification, scoring is weighted for each board and the total raw scores are converted to corresponding mental ages. As fully explained in his preceding article, the author has made certain minor changes empirically expanding the Shimberg scale, so that it includes all mental ages from 6 through 17 years (1).

The Stanford Achievement norms may be expressed either in terms of educational grade status or educational age. Thus, an educational grade status of 4.1 indicates the equivalent of 1 month of a fourthgrade education. The corresponding educational age of 9 years 11 months indicates the average age of pupils who attend such a grade. The scoring of the Army Beta Test is familiar to all, well standardized, and therefore needs no further explanation.

The data for this investigation were obtained from the files of the United States Northeastern Penitentiary Hospital, with the exception of the Stanford Achievement data, which were furnished through the courtesy of the institutional director of education. The selected group of 500 individuals included only those who were unable to take the Stanford-Binet or Army Alpha Tests because of language difficulties, illiteracy, or other valid reason, necessitating the use of a nonlanguage test such as the Army Beta. They were chosen from the 3,313 inmates admitted to the United States Northeastern Penitentiary from December 27, 1932, to November 16, 1935. Practically all of them came from the Northeastern section of the United States, including all of New England, New York, New Jersey, Delaware, Maryland, Pennsylvania, and parts of Ohio and West Virginia.

A general statistical analysis of the selected group reveals that the age range is from 20 to 73 years, with an average age of 38.26 years. Latins comprise 43.6 percent of the group, Nordics 18.2 percent, Slavs 12.2 percent, Colored 8.6 percent, Semitics 8.2 percent, Greeks
4.2 percent, and the remaining 5 percent includes miscellaneous races too few in number to consider separately. Only 8.2 percent gave a history of attending college or high school, 26.4 percent attended secondary grades, 45.2 percent primary grades, and 20.2 percent had no education at all. Unskilled laborers head the list with 53.6 percent, skilled laborers come second with 32.4 percent, and clerical and professional are last with 14 percent. Married individuals constitute 57.6 percent of the group, single 33.8 percent, divorced, separated, and widowed combined 8.6 percent. Almost half ( 42.4 percent) of the individuals were convicted for the passing and possession of counterfeit money, 22.8 percent were sentenced for the illegal manufacture of liquor, 12.2 percent for violation of the narcotic law, 5.8 percent for violation of the immigration law, and the remaining 16.8 percent for sundry offenses, including violation of the Bankruptcy Act, Dyer Act, Interstate Commerce Act, and other Federal laws. Those convicted for the first time form 69.8 percent of the group, and recidivists account for 30.2 percent.

Distribution curves were first plotted for all 3 tests. Figure 1 presents the following:
(1) Mental ages obtained by the use of the Army Beta Test.
(2) Mental ages obtained by the use of the Ferguson Test, employing the Shimberg method of scoring.
(3) Educational ages determined by the use of the Stanford Achievement Test.

Figure 2 presents the distribution of raw scores according to the original method of scoring the Ferguson Test.

It is quite apparent that the original method of scoring the Ferguson Test gives a much better type of distribution than does the Shimberg modification. According to the latter, the highest frequency is at the highest attainable score, a mental age of 17 years, and according to the former no one makes a perfect score, the closest approximation being 25, or 5 less than the maximum. The Army Beta curve is fairly well balanced, with a peak at a mental age of 11, which coincides with the median mental age. The abnormal distribution of educational ages is to be expected, owing to the type of individuals selected for this study, 209 out of the 500 being considered illiterate in the English language, according to the norms of the Stanford Achievement Test.

The coefficient of correlation between the Army Beta and Ferguson Tests on the basis of the entire group of 500 cases was found to be $.50 \pm .003$. Since the illiterates had to be excluded, correlation between the above tests and the Stanford Achievement were computed
on the basis of the 291 individuals who were able to score on the latter. These correlations were found to be as follows:
(1) Ferguson v8. Stanford Achievement_- 0.15 $\pm 0.004$
(2) Ferguson vs. Army Beta_--.-.-.-.-- . $49 \pm .004$
(3) Army Beta $v s$. Stanford Achievement_ . $46 \pm .004$


Figure 1.-Distribution of mental and educational ages of 500 inmates of the United States Northeastern Penitentiary, Lewisburg, Pa.

The findings seem to indicate that the Ferguson and Stanford Achievement tests do not measure a common factor and that the Army Beta stands about halfway between the two, having one factor in common with the Ferguson and another in common with the Stanford Achievement Test.

As previously noted, the main group was divided into two subgroups on the basis of the Stanford Achievement data. The first consists of the 209 inmates who were found illiterate as far as the English language is concerned. As a matter of fact, only 74 were found to be totally illiterate; that is, could not read or write in any language. The second consists of the 291 individuals who were considered literate by the test results. Comparative mental age averages were then determined for the main group and two subgroups on the basis of a further subdivision according to race, age, marital status, occupation, education,


Figure 2.-Distribution of the raw scores made by 500 inmates of the United States Northeastern Penitentiary, Lewisburg, Pa., on the Ferguson Form Board Test, using Ferguson's original method of scoring.
nature of offense, and number of convictions. Since a complete tabulation of the results would be too cumbersome and of doubtful value, only the general findings and impressions are presented.

First of all, considering the main group of 500 , the composite individual most likely to get a low score on the Ferguson Test would be colored, 41 years or more of age, divorced, an unskilled laborer, uneducated, convicted for violation of the narcotic law, and a recidivist. The one most likely to get a high score would be a Nordic, 29 to, 32 years of age, married, a skilled laborer, educated in a foreign institution for higher learning, convicted for the illegal manufacture of
liquor, and a first offender. The one most likely to get a low score on the Beta Test would be colored, 41 years or more of age, separated from his wife, an unskilled laborer, uneducated, convicted for the illegal manufacture of liquor, and a first offender. The one most likely to get a high score would be a Nordic, 25 to 28 years of age, single, a clerical or professional worker, educated in a foreign institution of higher learning, convicted for the violation of the immigration law, and a recidivist.

The composite pictures for the illiterate group are essentially the same as for the combined, with the following exceptions:
(1) For the low Ferguson score the age group is 33 to 36 instead of 41 or more.
(2) For the high Ferguson score the age group is 25 to 28 instead of 29 to 32 .
(3) For the high Beta score, married instead of single and first offender instead of recidivist.
The findings for the literate group agree with those of the combined group with only one exception, namely, on the high Beta score the age group 17-24 should be substituted for the $25-28$.

In making a general statistical comparison between the original group of 1,000 inmates and the present group of 500 , the former averages 5 years younger, is predominantly Nordic in contrast to southern European, is better educated, includes no illiterates, and embraces a much higher percentage of clerical or professional workers. In other respects there is very little difference.

Both the previous study and the present study indicate that the Shimberg modification of scoring the Ferguson Test is unsatisfactory, since it does not discriminate sufficiently at the upper mental age levels. For this reason, the original method of scoring is superior. Using the Stanford Achievement Test as a standard, correlations show that the Stanford-Binet Intelligence Test is most closely allied to the former, the Army Beta is next in order, and the Ferguson Test comes last. In other words, the Stanford-Binet is primarily a language test, the Army Beta stands about half way between a language and nonlanguage test, and the Ferguson is predominantly a nonlanguage test.

Comparative mental-age averages show that, in all instances, skilled workers score highest on the Ferguson Test, whereas clerical workers score highest on the Stanford-Binet and Army Beta Tests. Semitics score highest on the Stanford-Binet, but in all other tests Nordics have the edge. Negroes uniformly make the poorest showing. In general, the more rudimentary the education, the lower the score on all tests. Age does not show any strong central tendency. Recidi-
vists consistently score lower on the Ferguson than do first offenders. This also holds true for the Stanford-Binet. On the Army Beta, however, recidivists score higher than first offenders.

The question naturally arises as to which one of these tests is preferable from the standpoint of measuring native intelligence. While the Ferguson appears to have the advantage, since it is not so dependent on education, it is doubtful whether any single test can be used as the sole criterion. Many individuals who make a bigh score on the Ferguson fail deplorably on the Stanford-Binet, and vice versa. For this reason it seems more logical to adopt Thorndike's classification as presented by Pintner (7), namely, that there are three kinds of intelligence-concrete, abstract, and social. The ideal situation would be to have a battery of three tests corresponding to the three types of intelligence and to record each mental age separately.

Of the tests under investigation, the Ferguson apparently measures concrete intelligence, since it is nonverbal and uniformly easier for skilled workers who naturally deal with concrete objects. The Stanford-Binet, on the other hand, measures abstract intelligence, since it is obviously a verbal test and is easier for clerical and professional workers who deal with more or less abstract matters. While the Army Beta is classed as a nonverbal test, it does require some abstract knowledge to pass it-for example, the ability to write and recognize numbers. The most satisfactory combination of the above tests would be the Stanford-Binet and Ferguson for the examination of the literates and the Army Beta and Ferguson for the examination of illiterates and foreign-born individuals with a language handicap.

## CONCLUSIONS

1. The original method of scoring the Ferguson Form Board Test appears to be preferable to the Shimberg modification.
2. The coefficient of correlation between the Ferguson and Army Beta Tests is 0.50 , between the Ferguson and the Stanford Achievement 0.15, and between the Army Beta and Stanford Achievement 0.46 .
3. The composite individual most likely to get a low score on the Ferguson Test would be colored, 41 years or more of age, divorced, an unskilled laborer, uneducated, convicted for violation of the narcotic law, and a recidivist.
4. The composite individual most likely to get a high score on the Ferguson Test would be a Nordic, 29 to 32 years of age, married, a skilled laborer, educated in a foreign institution of higher learning, convicted for the illegal manufacture of liquor, and a first offender.
5. The composite individual most likely to get a low score on the Army Beta Test would be colored, 41 years or more of age, separated
from his wife, an unskilled laborer, uneducated, convicted for the illegal manufacture of liquor, and a first offender.
6. The composite individual most likely to get a high score on the Army Beta Test would be a Nordic, 25 to 28 years of age, single, a clerical or professional worker, educated in a foreign institution of higher learning, convicted for the violation of the immigration law, and a recidivist.
7. The Ferguson apparently measures concrete intelligence while the Stanford-Binet and, to a lesser extent, the Army Beta measure abstract intelligence.

## REFERENCES

(1) Pescor, M. J.: A statistical study of the Ferguson Form Board Test. Pub. Health Rep., 50: 1815-1823 (December 27, 1935).
(2) Ferguson, G. O., Jr.: A series of form boards. Jour. Exp. Psych., 3: 47-58 (1920).
(s) Bronner, A. F., Healy, W., Lowe, G. M., and Shimberg, M. E.: A manual of individual mental tests and testing, pp. 126-127. Little, Brown \& Co. 1929.
(4) Reichard, J. D.: The intelligence of the prospective immigrant. Pub. Health Bull. No. 206, pp. 10-11 (1933). Also page 5 of the Manual which accompanies the Bulletin.
(5) Kelley, T. L., Ruch, G. M., and Terman, L. M.: New Stanford Achievement Test. Directions for administering. (Second revision.) World Book Co. 1931.
(6) Yoakum, Clarence S., and Yerkes, Robert M.: Army Mental Tests, pp. 79-92. Quinn and Boden Company. 1931.
(7) Pintner, R.: Intelligence testing methods and results, pp. 52-62. Henry Holt \& Co. 1932.

## AN IMPROVED TECHNIQUE FOR THE SPECTROGRAPHIC ANALYSIS OF BLOOD SAMPLES BY THE GRAPHITE ARC METHOD ${ }^{1}$

By F. H. Goldman, Associate Chemist, and D. W. Armstrong, Junior Physicist, U. S. Public Health Service

Minute amounts of the heary metals, such as lead, silver, and mercury, in body fluids and tissues can be estimated by the general spectrographic method of Nitchie and Standen (1) (2), using the graphite arc. Following this method, the sample is burned in the direct current arc, using $5 / 16$ inch graphite rods as electrodes. The rod that is used as the anode holds the sample in a cavity which is drilled with a $1 / 8$-inch drill to a depth of about $3 / 8$ inch. After the cavity is drilled, the rod is burned for 1 minute at 10 amperes to make the graphite porous. After cooling, it is "loaded" with 0.1 cc of sample.

The usual procedure in testing blood consists either in ashing the blood and burning the ash in the arc (3), or in burning the whole blood in the arc. The ashing process is impossible where elements which

[^4]are volatile at low temperatures are dealt with, and may be inaccurate because of possible uneven dispersion of the element throughout the ash. Whole blood introduced into the prepared graphite rod does not absorb into the rod nor penetrate it to any extent. The blood forms a "skin" on the end of the rod and clots there. Laked or diluted blood is but slightly better in this respect. There are two methods of procedure for burning the sample.

One method is to bring the graphites into contact immediately after filling, and allow the blood to char for some 15 seconds without actually burning (4), after which the graphites are separated and the arc is struck. During the charring process volatile matter is driven off. At times spattering also occurs, or the blood may run down the side of the rod. In the case of a volatile element, such as mercury, this procedure would lead to inaccuracy, and the mechanical losses would also cause inaccuracies with any other element.

Another procedure is to dry the blood on the graphite. When this is done, a great part of the coagulated material remains on the surface of the graphite rod. In this case it is often difficult even to strike the arc. At other times the blood burns off with almost explosive riolence, possibly without being recorded on the photographic plate.

In order to obviate these difficulties, a more satisfactory technique had to be developed. It was thought that some substance might be added to the blood which would increase its wetting power and absorption into the graphite rod. Several substances were tried, including sodium taurocholate and saponin. Saponin proved most promising. Saponin, when added to blood in small amounts, will cause it to lake. However, as the concentration of saponin is increased, the wetting power and the absorption of the blood on graphite increase. After a series of experiments to find optimum conditions for its use, the procedure described in the following paragraphs was adopted.

A solution of saponin is made up by adding 40 grams of saponin to 100 cc of water. Three cc of the saponin solution are added to 7 cc of blood. It is shaken and allowed to stand 5 minutes. Greater amounts of saponin solution may be used, but this means greater dilution of the sample. For different amounts of blood, the same proportion of blood to saponin should be used. With the concentration of saponin recommended, the sample absorbs into the rod very readily. Only a slight stain appears on the surface after drying.

When the sample will not stand dilution, it is treated as follows: One gram of saponin is added to 10 cc of blood and shaken to dissolve the saponin. This will give a satisfactory solution, but the abovedescribed method is better.

For quantitative spectrographic analysis an internal standard is necessary. Thallium has been used with success in our laboratories for the determination of mercury. Thallium sulphate may be added to the saponin solution or it may be added directly to the blood sample without coagulation. In addition, the surface of the anode, after burning, is smoothed with a clean steel blade. The sample is introduced into the cup of the graphite by means of a $1-\mathrm{cc}$ tuberculin syringe. A syringe is preferable to a pipette because the needle can be introduced to the bottom of the hole in the graphite, thus minimizing the danger of entrapping air bubbles.

Samples prepared according to this technique burn evenly, give a satisfactory arc, and photograph well. The spectral lines are clear and well defined and lend themselves excellently to quantitative investigation.

## REFERENCES

(1) Nitchie, C. C.: Ind. and Eng. Chem., Anal. Ed. 1, No. 1, p. 1 (January 15, 1929).
(2) Nitchie, C. C., and Standen, G. W.: Ind. and Eng. Chem., Anal. Ed. 4, No. 2, p. 182 (April 15, 1932).
(3) Cholak, J.: Ind. and Eng. Chem., Anal. Ed. 7, No. 5, p. 287 (September 15, 1935).
(4) Blumberg, H., and McNair Scott, T. F.: Bull. Johns Hopkins Hospital, vol. 56, No. 1, p. 32 (January 1935).

## DEATHS DURING WEEK ENDED AUG. 8, 1936

[From the Weekly Health Index, issued by the Bureau of the Census, Department of Commerce]


## PREVALENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

UNITED STATES

## CURRENT WEEKLY STATE REPORTS

These reports are preliminary, and the figures are subject to change when later returns are received by the State health officers

Reports for Weeks Ended Aug. 15, 1936, and Aug. 17, 1935
Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended Aug. 15, 1936, and Aug. 17, 1935


Bee footnotes at end of table.

Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended Aug. 15, 1936, and Aug. 17, 1935-Continued


See footnotes at end of table.

Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended Aug. 15, 1936, and Aug. 17, 1935-Continued

| Division and State | Poliomyelitis |  | Scarlet fever |  | Smallpox |  | Typhoid fever |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Week ended Aug. 15, 1936 | Week ended Aug. <br> 17, 1835 | Week ended Aug. 15, 193 | Week ended Aug. $\square$ | Week ended Aug. 15,1936 | Week ended Aug. 17, 1935 | Week ended Aug. 15, 1936 | Week ended Aug. 17, 1935 |
| East South Central States: |  |  |  |  |  |  |  |  |
| Kentucky ------------ |  | 27 | 10 |  | 0 |  |  | ${ }_{56} 61$ |
| Alabama ${ }^{\text {a }}$ | 22 | 2 | ${ }_{5}$ | ${ }_{6}$ | 0 | 1 | 28 | 6 |
| Mississippi 2............ | 11 | 0 | 1 | 5 | 0 | 0 | 13 | 5 |
| West South Central States: |  |  |  |  |  |  |  |  |
| Arkansas.- | 0 | 1 | 3 | 9 | 0 | 2 | 14 | 13 |
| Louisiana. | 0 | 4 | 3 | 9 | 0 | 0 | 27 | $\stackrel{21}{ }$ |
| Oklahoma | 0 | 0 | 3 | 8 | 0 | 0 | 18 | ${ }_{54}^{27}$ |
| Texas 4-...... | 2 | 1 | 17 | 28 | 1 | 0 | 30 | 54 |
| Mountain States: |  | 0 | 7 |  | . 23 | 1 | 8 |  |
| Idaho | 2 | 0 | 3 | 1 | 1 | 0 | 2 | 2 |
| W yoming | 0 | 0 | 4 | 4 | 0 | 1 | 3 | 1 |
| Colorado. | 2 | 0 | 6 | 15 | 0 | 1 | 1 | 7 |
| New Mexico. | 0 | 0 | 4 | 6 | 0 | 0 | 10 | 13 |
| Arizona-- | 0 | 1 |  | 3 | 0 | 0 | 0 | 8 |
| Utah ${ }^{2}$. | 0 | 2 | 4 | 18 | 0 | 0 | 0 | 0 |
| Pacific States: |  |  |  |  |  |  |  |  |
| Washington. | 3 | 1 | 11 | 18 | 0 | 1 | 2 2 | 8 |
| California | 8 | 34 | 69 | 49 | 2 | 0 | 21 | 10 |
| Total | 147 | 721 | 979 | 948 | 41. | 21 | 563 | 730 |
| First 33 weeks of year....... | 1,367 | 3, 522 | 183, 952 | 180, 379 | 6,245 | 5,311 | 6,896 | 9,248 |

${ }^{1}$ New York City only.
2 Week ended earlier than Saturday.
${ }^{3}$ Rocky Mountain spotted fever, week ended Aug. 18, 1936, 10 cases, as follows: Maryland, 3; District of Columbia, 1; Virginia, 2; North Carolina, 3; Oregon, 1.
${ }^{4}$ Typhus fever, week ended Aug. 15, 1936, 71 cases, as follows: Maryland, 1; Virginia, 1; North Carolina 1; Georgia, 41; Florida, 3; Alabama, 13; Texas. 11.

- Exclusive of Oklahoma City and Tulsa.


## SUMMARY OF MONTHLY REPORTS FROM STATES

The following summary of cases reported monthly by States is published weekly and covers only those 8tates from which reports are received during the current week:

| State | $\begin{gathered} \text { Menin- } \\ \text { gococ- } \\ \text { cus } \\ \text { menin- } \\ \text { gitis } \end{gathered}$ | Diphtheria | Influ- | $\begin{gathered} \text { Mala- } \\ \text { ria } \end{gathered}$ | Measles | Pellagra | $\begin{aligned} & \text { Polio- } \\ & \text { mye- } \\ & \text { litisis } \end{aligned}$ | Scarlet Sover | $\underset{\text { pox }}{\text { Small- }}$ | Typhoid fover |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June 1956 Florida Massachnsetts......... | 8 15 | 20 | 21 | 14 | $\begin{array}{r} 39 \\ 4,066 \end{array}$ | 4 | 4 | 13 724 | 0 | 12 |
| July 1956 <br> California | 34 | 121 | 825 | 15 | 2,294 | 13 | 52 | 556 | 8 | 49 |
| Delaware-...- |  | 7 |  |  | 15 |  | 0 | 4 | 0 | 1 |
| Michigan | 8 | 52 | 3 | 9 | 119 |  | 10 | 437 | 1 | 30 |
| New Jersey- | 12 | 32 | 17 | 6 | 709 |  | 2 | 192 | 0 | 22 |
| Ohio-.... | 21 | 69 1 | 10 1 | 5 | 478 | 1 | 7 | 281 43 | ${ }^{6}$ | 63 1 |


| June 1856 | Cases | July 1998-Continued |  | July 1986-Continued |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Florida: |  | Dysentery-Continued. |  | abies in man: |  | Cases |
| Dysentery.. | ${ }_{6} 6$ | California (bacillary) - | 30 | California- |  | 1 |
| Mumps. | 68 | New Jersey (amoebic) -- | 1 | elapsing fever: |  |  |
| Typhus fever | 2 | Epidemic encephalitis: California |  | California...- |  |  |
| Undulant fever | 1 36 | California |  | Rocky Mountain fever: | spotted |  |
| Whooping cough Massachusetts: | 36 | Ohio-.... | 2 | Neu Jersey |  |  |
| Actinomycos | 1 | Food poisoning: |  | W yoming |  |  |
| Anthrax-. | 1 | California. | 185 | Septic sore throat: |  |  |
| Chicken pox | 893 | German measles: |  | California |  | ${ }_{3}^{33}$ |
| Dysentery (bacillary).- | 8 | California | $\begin{array}{r} 174 \\ 2 \end{array}$ | Michigan |  | 19 |
| Epinemic encephalitis. German measles | 684 | Michigan | 152 | W yoming |  | 2 |
| Lead poisoning .-.-...... |  | New Jersey | 138 | Tetanus: |  |  |
| Mumps. | 1,232 | Ohio | 21 | California |  | 7 |
| Ophthalmia |  | ranuloma, coccidioidal: |  | Michigan. |  |  |
| rum......- | 99 | California | 3 | New Jersey |  |  |
| Rabies in anima | 12 | Lead poisonin |  | Ohio |  |  |
| Septic sore throa | 16 |  | 4 | Trachoma: |  |  |
| Tetanus | 5 | Califor | 1 | New Jersey |  |  |
| Trichinosis | 1 | Mumps: |  | Ohio |  |  |
| Undulant fever | 1 | California | 1, 052 | Trichinosis: |  |  |
| Whooping cough | 390 | Delawa |  | California |  | 2 |
|  |  | New J | 481 | Tularaemia: |  |  |
| thrax: |  | Ohio. | 120 | California. |  |  |
| New Jers | 1 | Wyoming | 28 | W yoming |  | 1 |
| tulism: |  | Ophthalmia neonatorum: |  | Undulant fever: |  |  |
| California | 4 | California | 3 | California |  | 16 |
| hicken pox: |  | Now Jersey | 8 | Michigan.- |  |  |
| California | 622 | Paratyphoid |  | Ohio...... |  | 8 |
| Delaware | 7 | Paratalifornia |  | Vincent's infect |  |  |
| Michigan | 575 | Michigan | 3 | Michigan. |  | 30 |
| New Jer | 283 | New Jerse | 2 | Whooping cough: |  |  |
| Ohio... | 277 | Plague: |  | California.- |  | 1,470 |
| W yoming | 14 | California | 1 | Delaware |  | 43 |
| Diarrhea and enteritis: Ohio (under 2 years) |  | Rabies in animals: |  | Michigan |  | , 153 |
| Ohio (under 2 years).... | 12 | Californis | 83 | New Jersey |  | 614 |
| Dysentery: |  | Michigan. | 8 | Ohio-. |  | 261 |
| California (amoebic).- | 10 | New Jersey | $8$ | W yoming |  | 8 |

## RODENT PLAGUE IN BEAVER COUNTY, UTAH

A ground squirrel, Citellus grammurus, found in Indian Creek Canyon, 11 miles northeast of Beaver, Beaver County, Utah, was reported under date of August 7, 1936, to have been found plagueinfected.

## CASES OF VENEREAL DISEASES REPORTED FOR JUNE 1936

These reports are published monthly for the information of health offcers in order to furnish current data as to the prevalence of the venereal diseases. The figures are taken from reports received from State and city health officers. They are preliminary and are therefore subject to correction. It is hoped that the publication of these reports will stimulate more complete reporting of these diseases.

Reports from States

|  | Syphilis |  | Gonorrhea |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Cases reported during month | Monthly case ratos per 10,000 population | Cases reported during month | Monthly case rates per 10,000 population |
| Alabama ${ }^{1}$ |  |  |  |  |
| Arizona | 28 | 0.61 | 62 | 1. 36 |
| Arkansas- | 155 | . 83 | 80 | . 43 |
| California | 1,116 | 1.81 | 989 | 1.61 |
| Colorado ${ }^{\text {a }}$ |  |  |  |  |
| Connecticut | 224 | 1.35 | 146 | . 88 |
| Delaware | 120 | 4.96 | 45 | 1.86 |
| District of Colu | 169 | 3.40 | 136 | 2.74 |
| Georgia--. | 1,069 | 3. 67 | 467 | 1.60 |
| Idaho.-- |  |  | 0 |  |
| Illinois... | 1,312 | 1.67 | 1,022 | 1.30 |
| Indiana. | 112 | . 34 | 112 | . 34 |
| Iowa- | 73 | . 29 | 141 | . 57 |
| Kansas..- | 59 | . 31 | 88 | . 46 |
| Kentucky | 155 | . 58 | 222 | . 84 |
| Louisiana. | 138 | . 64 | 78 | . 36 |
| Maine | 30 | . 37 | 35 | . 44 |
| Marylin 1. --- | 1,018 | 6.09 | 258 | 1.54 |
| Massachusetts | 423 | . 98 | 406 | . 94 |
| Michigan. | 542 | 1.06 | 549 | 1.08 |
| Minnesota | 249 | . 96 | 293 | 1. 13 |
| Mississippi | 1,426 | 6.93 | 1,984 | 9.65 |
| Missouri. | 215 | . 58 | 117 | . 32 |
| Montana | 47 | . 87 | 38 | . 71 |
| Nebraska | 19 | . 14 | 75 | . 54 |
| Nevada ${ }^{2}$-.....- |  |  |  |  |
| New Hampshir | 8 | .$^{17}$ | 12 | . 28 |
| New Jersey-. New Mexico | 682 | 1.61 | 269 | . 64 |
| New Mexico | 62 | 1. 42 | 37 | . 85 |
| New York-1.- | 8,167 | 6.25 | 1,925 | 1.47 |
| North Carolina | 1, 344 | 4.07 | 389 | 1.18 |
| North Dakota | 13 | . 19 | 47 | . 68 |
| Ohio-...- | 613 | . 90 | 290 | . 42 |
| Oklahoma | 163 | . 68 | 145 | - 59 |
| Oregon Penn l ---.-.- | 97 | . 98 | 126 | 1. 27 |
| Pennsylvania ${ }^{\text {a }}$ | 314 | . 32 | 191 | . 19 |
| Rhode Island.-. | 106 | 1.50 | 39 | . 55 |
| South Carolina South Dakota | 223 | 1.27 | 323 | 1.85 |
| South Dakota | 8 | . 03 | 19 | . 27 |
| Tennessee. | 835 | 3.12 | 455 | 1.70 |
| Texas ${ }^{\text {U }}$ - | 446 | . 73 | 210 | . 35 |
| Utah ${ }^{2}$ |  |  |  |  |
| Virginia. | 421 | 1.72 | 259 | 1. 08 |
| Washington | 153 | . 95 | 222 | 1.38 |
| West Virginia | 179 | 1.00 | 120 | . 67 |
| Wisconsin ${ }^{4}$ | 22 | . 07 | 137 | . 46 |
| W yoming ${ }^{2}$. |  |  |  |  |
| Total | 22, 575 | 1.88 | 12, 584 | 1.05 |

[^5]Reports from cities of 200,000 population or over

|  |  | Syphilis |  | Gonorrhea |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cases reported during month | Monthly case rates per 10,000 population | Cases reported during month | Monthly case rates per 10,000 population |
| Akron, Ohio. |  | 18 | 0.66 | 8 | 0.29 |
| Atlanta, Ga- |  | ${ }_{6} 186$ | 5. 78 | 187 | 6. 51 |
| Baltimore, Md. |  | 600 | 7.27 | 160 | 1. 94 |
| Birmingham, Ala |  | 135 176 | 4. 78 2.23 | 66 131 | 2.34 1.66 |
| Boston, Mass Buffialo, N. Y. |  | 176 | 2.23 | 131 | 1.66 |
| Chicago, Ill. |  | 827 | 2.32 | 745 | 2.09 |
| Cincinnati, Ohio |  | 54 | 1. 16 | 42 | . 90 |
| Cleveland, Ohio. |  | 293 | 3. 15 | 110 | 1. 18 |
| Columbus, Ohio |  | 23 109 | 8.76 ${ }^{\text {. }}$ | 15 33 | .49 1.14 |
| Dallas, Tex-..- |  | 109 | 3.76 | 33 | 1. 14 |
| Denver, Colo.. |  | 33 | 1.11 | 24 | . 81 |
| Detroit, Mich. ${ }^{1}$ |  |  |  |  |  |
| Houston, Tex ${ }^{\text {b }}$ |  | 192 | b. 73 | ${ }_{3}^{67}$ | 2.00 |
| Indianapolis, Ind |  | 24 | . 64 | 35 | . 93 |
| Jersoy City, N. J- |  | 42 | .03 1.00 | 1 | . 03 |
| Kansas City, Mo- |  | 42 371 | 1. 2.59 | 285 | 1.89 |
| Louisville, Ky.... |  | 243 | 7.50 | 136 | 4.20 |
| Memphis, Tenn. |  | 154 | 5. 77 | 64 | 2.40 |
| Milwaukee, Wis. |  | 5 | . 08 | 27 | +.44 |
| Minneapolis, Minn |  | 58 283 | 1.19 | 104 | 2.14 2.29 |
| Newark, N. J |  | 283 | 6.11 | 108 | 2.29 |
| New Orieans, La. - |  | 6,294 | 8.62 | 1,155 | 1.58 |
| Oakland, Calif. |  | 39 | 1.29 | 36 | 1. 19 |
| Omaha, Nebr |  | 7 | . 32 | 14 | . 64 |
| Philadolphia, Pr. |  | 453 | 2.28 | 97 | . 49 |
| Pittsburgh, Pa... |  | 61 | . 89 | 41 | . 60 |
| Portland, Oreg. ${ }^{\text {P }}$ |  | 50 | 1.93 | 18 | . 69 |
| Providence, R. I Rochester, N . Y. |  | 50 | 1.93 | 18 | . 59 |
| St. Louis, Mo...- |  | 80 | . 96 | 36 | . 43 |
| St. Paul, Minn |  | 30 | 1.06 | 40 | 1.42 |
| San Antonio, Tex ${ }^{\text {S }}$ |  | 114 | 1.70 | 126 | 1.88 |
| Seattle, Wash....- |  | 93 | 2.45 | 122 | 3.21 |
| Syracuse, N. Y |  | 57 | 2.62 | 27 | 1. 24 |
| Toledo, Ohio .-. |  | $\begin{array}{r}41 \\ \hline 169\end{array}$ | 1.35 | ${ }_{136}^{27}$ | $\begin{array}{r}189 \\ \hline 84\end{array}$ |
| Washington, D. C.6 |  | 169 | 3.40 | 136 | 2.74 |

[^6]
## WEEKLY REPORTS FROM CITIES

City reports for week ended Aug. 8, 1936
This table summarizes the reports received weekly from a selected list of 140 cities for the purpose showing a cross section of the current urban incidence of the communicable diseases listed in the table. Weekly reports are received from about 700 cities, from which the data are tabulated and filed for reference.


City reports for week ended Aug. 8, 1936-Continued

| State and city | Diphtheria cases | Influenza |  | Measles cases | Pneumonia deaths | Scarlet fever cases | $\begin{gathered} \text { Small- } \\ \text { pox } \\ \text { cases } \end{gathered}$ | Tuber culosis deaths | Typhoid fevercases cases | Whoopingcoughcases | Deathsallcauses |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cases | Deaths |  |  |  |  |  |  |  |  |
| Missouri: |  |  |  |  |  |  |  |  |  |  |  |
| Kansas City.-- | 0 | .....- | 0 | 0 | 1 | 4 | 0 | 5 | 0 | 0 | 81 |
| St. Joseph <br> St. Louis | 0 |  | 0 | 0 | 1 4 | 4 | 0 | 2 7 | 2 | 7 | 138 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Fargo.-........ | 0 |  | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 3 | 5 |
| Grand Forks.-- | 0 |  |  | 0 |  | 0 | 0 |  | 0 | 0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aberdeen <br> Sioux Falls | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
|  |  |  |  |  |  |  |  |  |  |  | 37 |
| Kansas: |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Wichita.........- | 0 |  | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 29 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Maryland: | 5 | 2 | 1 | 25 | 8 | 2 | 0 | 13 | 5 | 94 | 160 |
| Cumberland.-- | 0 |  | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 12 |
| Frederick | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| District of Columbia: |  |  |  |  |  |  |  |  |  |  |  |
| Virginia: |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Roanoke...- | 0 |  | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 22 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Huntington.---- | 0 |  |  | 0 |  | 1 | 0 |  | 0 | 0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Wilmington---- | 0 |  | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 6 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Columbia ---.-- |  |  |  |  |  |  |  |  |  |  |  |
| Florence-...--- | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Brunswick-.---- | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| Savannah-.----- | 1 |  | 0 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 24 |
| Florida: |  |  |  |  |  |  |  |  |  |  |  |
| Miami_-.-....-- | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | 1 | 0 | 0 | 0 | 2 1 | 0 | 1 | 0 | 4 | 20 |
| Kentucky: |  |  |  |  |  |  |  |  |  |  |  |
| Ashland....--- |  |  |  |  |  |  |  |  |  |  |  |
| Covington-..--- | $\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \end{aligned}$ |  | 0 | 2 | $\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\stackrel{2}{0}$ | 0 | 19 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Rnorville...-.- | 2 |  | 0 | 0 | 3 | 0 | 0 |  | 3 |  | 32 40 |
| Memphis-....- | 2 |  | 0 | 0 | 0 | 3 1 | 0 | 3 3 | 0 | 0 | 40 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Alabama: <br> Birmingham | 0 |  |  |  | 5 | 1 | 0 | 1 | 4 | 0 | 53 |
| Mobile.-.-.--- | 0 |  | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 23 |
| Montgomery-- | 1 |  |  | 0 |  | 1 | 0 |  | 0 | 0 |  |
| Arkansas: ${ }_{\text {Fl\| }} 100$ |  |  |  |  |  |  |  |  |  |  |  |
| Fort Smith.--- |  |  |  |  |  | 0 | 0 |  | 0 | 0 | 2 |
| Little Rock-.-- | 0 |  | 0 | 0 | 1 | 1 | 0 | 1 | 0 |  |  |
| Louisiana: <br> Lake Charles.- |  |  | 0 |  |  |  |  |  |  | 1 | 7 |
| New Orleans.-- | 0 |  | 8 | 3 | 7 | 6 | 0 | 20 | 8 | 8 | 183 |
| Shreveport.-.-- | 0 |  | 0 | 0 | 3 | 2 | 0 | 2 | 1 | 0 | 38 |
| Oklahoma: ${ }_{\text {OklahomaCity }}$ |  |  | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 49 |

City reports for week ended Aug. 8, 1988-Continued

| State and city | Diph theria cases | Influenza |  | Measles cases | Pneun onia deaths | Scarlet fever cases | Smallpox cases | Tuberculosis deaths |  | Whoopingcoughcases | Deaths, gll causes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cases | Deaths |  |  |  |  |  |  |  |  |
| Texas: |  |  |  |  |  |  |  |  |  |  |  |
|  | 2 |  | 0 | 2 | 1 | 3 | 0 | 1 | 1 | 0 | 88 |
| Port Worth...- | 1 |  | 0 | 0 | 3 | 0 | 0 | 3 | 1 | 0 | 42 |
| Galveston....- | 0 |  | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 16 |
| Houston.-...-- | 4 |  | 0 | 0 | 7 | 1 | 1 | 2 | 1 | 0 | 75 |
| Ban Antonio..- | 4 |  | 0 | 1 | 7 | 0 | 0 | 6 | 2 | 0 | 78 |
| Montana: |  |  |  |  |  |  |  |  |  |  |  |
| Billings.-.....- | 0 |  | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 8 |
| Great Falls...- | 0 |  | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |  |
| Helena | 0 |  | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |  |
| Idaho: | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| IRaboise.........-- | 0 |  | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 10 |
| Colorado: |  |  |  |  |  |  |  |  |  |  |  |
| Colorado Springs | 0 |  | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 10 |
| Denver-....---- | 2 |  | 1 | 2 | 4 | 1 | 0 | 3 | 0 | 27 | 71 |
| Pueblo........-- | 0 |  | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 7 |
| New Mexico: | 0 |  | 0 | 0 | 0 | 1 | 0 | 4 |  | 6 | 12 |
| Utah: |  |  |  | 0 | 0 | 1 | 0 |  | 1 | 6 | 12 |
| Salt Lake City- | 0 |  | 0 | 3 | 2 | 2 | 2 | 2 | 0 | 16 | 20 |
| Nevada: <br> Reno |  |  |  |  |  |  |  |  |  |  |  |
| Washington: |  |  |  |  |  |  |  |  |  |  |  |
| Seattle-..------ | 0 |  | 0 | 7 | 0 | 1 | 0 | 4 | 0 |  | 87 |
| Spokane.......-. | 0 | 1 | 1 | 2 | 0 | 4 | 0 | 1 | 0 | 6 | 31 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8alem........... 0 0 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sacramento.... San Francisco. | 01 |  | 0 | 1 | 0 | 8 | 0 | 3 | 4 | 2 | 32 |
|  |  |  | 0 | 10 | 5 | 6 | 0 | 9 | 1 | 5 | 158 |
| State and city | Meningococcus meningitis |  |  | Polio-myelitis cases | State and city |  |  |  | Meningococcus meningitis |  | Polio-myelitis cases |
|  |  | Cases | Deaths |  |  |  |  |  | Cases | Deaths |  |
| Massachusetts: |  | 0 | 0 | 1 | Georgia: <br> Atlanta |  |  |  | 2 | 0 | 0 |
| New York: |  |  | 4 | 5 | Tennessee: |  |  |  | 0 | 0 |  |
| New York |  | 10 |  |  |  | Memph | S. - |  |  | 0 | 3 |
| Syracuse---- |  | 0 |  | 1 | Nashville - .----------Alabama: |  |  |  | 0 | 0 |  |
| Pennsylvania: Pittsburgh. |  | 1 | 0 | 2 |  |  |  |  | 0 | 1 |  |
| Ohio: |  | 02 |  | 201 | Louisiana: <br> New Orleans |  |  |  |  | 0 | 0 | 1 |
| Cincinnati. |  |  | 1 |  |  |  |  |  | 0 |  |  |  |
| Cleveland... |  |  | 1 |  | Texas: <br> Dallas |  |  |  |  |  |  |  |
| Illinois: Chicago |  | 1 | 0 | 1 |  |  |  |  | 01 | 0 | 1 |  |
| Michigan: ${ }^{\text {Chicago-.-- }}$ |  |  |  |  |  | an Ant | nio. |  |  |  |  |  |
| Detroit |  | 0 | 1 | 3 | Montana: <br> Billings |  |  |  | 1 | 0 | 0 |  |
| Missouri: St. Joseph |  | 2 | 0 | 0 | Washington:------------ |  |  |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  |  |  |
| Maryland: |  | 2 | 0 | 0 |  | pattle- |  |  |  | 0 | 1 |  |
| Baltimore. |  | 1 | 0 | 0 | California: |  |  |  | 0 |  |  |  |
| Virginia: <br> Norfolk |  | 1 | 1 |  |  | os Ang | cisco... |  |  | 1 | 4 |  |
| West Virginia: |  |  |  | 0 |  | an Fra | cisco.. |  | 2 |  |  |  |
| Huntington. |  | 0 | 0 | 1 |  |  |  |  |  |  |  |  |

Epidemic encephalitis.-Cases: New York, 3; Pittsburgh, 2; Kansas City, 1; Albuquerque, 1.
Pellagra.-Cases: Savannah, 2; Nashville, 1; New Orleans, 1; San Francisco, 3.
Typhus fever.-Cases: Atlanta, 1; Brusnwick, 1; Savannah, 5; Birmingham, 2; Dallas, 1.

## FOREIGN AND INSULAR

## CZECHOSLOVAKIA

Communicable diseases-May 1936.-During the month of May 1936, certain communicable diseases were reported in Czechoslovakia as follows:


## LATVIA

Communicable diseases-April-June 1936.-During the months of April, May, and June 1936, cases of certain communicable diseases were reported in Latvia as follows:

| Disease | April | May | June | Disease | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Botulism. |  | 2 | 4 | Paratyphoid fever.- | 13 | 14 | 16 |
| Cerebrospinal meningitis | 20 | 15 | 7 | Poliomyelitis | 13 | 2 | 2 |
| Diphtheria.....-.---- | 36 | 68 | 53 | Puerperal septicemia | 13 | 13 | 16 |
| Erysipelas | 31 | 40 | 41 | Tetanus...-- | 285 | 126 4 | 18 |
| Influenza. | 134 | 95 | 46 | Trachoma. | 68 | 33 | 26 |
| Leprosy. | 4 | 2 | 2 | Tuberculosis. | 288 | 352 | 208 |
| Malaria. | 1 | 1 | 1 | Typhoid fever--- | 40 | 51 | 39 |
| Measles. | 328 | 497 | 271 | Whooping cough. - | 93 | 62 | 37 |

## MEXICO

Mexico, D. F.-Paratyphoid fever.-According to information dated August 13, 1936, a marked increase in the number of cases of paratyphoid fever was noted. Some cases occurred among tourists in Mexico, D. F., Mexico.
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER
From medical officers of the Public Health Service, American consuls, International Office of Public Health, Pan American Sanitary Bureau, health section of the League of
Nations, and other sources. The reports contained in the following table must not be considered as complete or final as regards either the list of countries included or the fgures for the particular countries for which reports are given.
[C indicates cases; D, deaths; P, present]

| Place | Dec. 29, <br> Jan. 25, 1936 | $\begin{gathered} \text { Jan'. 26- } \\ \text { Feb. 29, } \\ 1936 \end{gathered}$ | $\begin{gathered} \text { Mar. } 1- \\ 28, \\ 1936 \end{gathered}$ | Mar. Apr. 25, 1936 | Week ended- |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | May 1936 |  |  |  |  | June 1936 |  |  |  | July 1936 |  |  |  |
|  |  |  |  |  | 2 | 9 | 16 | 23 | 30 | 6 | 13 | 20 | 27 | 4 | 11 | 18 | 25 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| mdia | 14, 7,789 | 13 7,183 | 16,988 7 | 11,745 | 2, 285 | 2, 201 | 2,112 | 2,120 | 1,916 | 2,098 | 3,861 2,01 | 1,793 | 1,771 |  |  |  |  |
| Assam. | ${ }_{318}$ | ${ }^{7} 92$ | $\begin{array}{r}79 \\ \hline\end{array}$ | -137 | 2, 75 | ${ }_{124}$ | 2, 115 | ${ }^{2} 98$ | 157 | 2,86 | -98 | - 41 | - 37 | 31 | 16 | 47 | 57 |
|  | 167 | 46 | 30 | 65 | 37 | 51 | 65 | 49 | 90 | 46 | 41 | 49 | 16 | 25 | 11 | 26 | 13 |
| Bomsein - Pr-- |  |  |  | 145 | 63 |  | $\begin{array}{r}3 \\ 8 \\ \hline\end{array}$ | 130 | 6 | 6 | 3 | 1 | 592 | 552 | 666 |  |  |
|  | 237 | 149 | 55 | 42 | 25 | 27 | 34 | 37 |  |  |  |  | 224 | 242 | 270 |  | --...- |
| Bombay. <br> Calcutta. |  | 380 | 802 | 799 | 161 | 192 | 288 | 225 | 166 | 21 191 | 133 | 180 | $7{ }^{-7}$ | 52 | 21 39 3 | 37 |  |
| Central Provinces and | 14 | 56 | 217 | 357 | 38 | 23 | 163 | 184 | 307 | 279 | 404 | 288 |  | 241 | 308 | 367 | 435 |
| Chittagong--.-...- |  |  |  |  | 4 | 1 |  |  | 1 |  | 7 | 1 |  | 2 |  | 3 |  |
| Madras Presidency | 3, 870 | 2, 877 | 2,751 | 1,677 | 265 | 221 | 292 | 346 | 432 | 501 | 479 | 600 | 484 |  |  |  |  |
| Madras | 2, 013 | 1,407 70 | 1,340 26 | 758 | 146 | 116 1 | 158 | 187 | 180 | 228 | 233 | 245 | 198 |  | 2 |  |  |
|  | 3 | 26 | 11 | 1 |  |  |  |  |  |  |  |  |  |  |  | 1 | -.....- |
| Koulmein.. |  | 2 | 10 | 2 | 1 |  | 2 |  |  | 1 |  |  |  |  |  |  |  |
| Nogapatam. | 22 | 56 | 6 | 2 |  |  |  |  |  |  |  |  | 13 | 9 | 1 | 1 | 4 |
|  | 8 | 27 | 2 |  |  |  |  |  |  |  |  |  | 9 | 4 |  | 1 | 2 |
| Northwest Frontier Pro | 1 | 1 |  | 6 | 3 | 5 | 3 | 15 | 35 | 35 |  | 54 | 81 | 50 | 93 | 118 | 157 |
| Rangoon. | 11 |  |  | 4 |  |  |  |  |  |  | 11 |  | 1 | 1 | 2 |  |  |
| Indis (French): |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Chandernagor Ternitory | 8 | 6 |  | 6 | 1 | 1 |  |  |  |  | 6 |  | 1 | 2 |  |  | - |
| Karikal Province-....- | 116 | 91 |  | 4 |  |  |  |  |  |  |  |  | 8 | 8 |  |  |  |
| Indochina (see also table below): <br> Bentre. | 44 | 52 | 74 | 7 | 10 | 6 |  |  |  |  | 4 |  |  | 1 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


${ }^{1}$ According to information dated Apr. 8, 1936, 31 cases of cholera with 27 deaths have occurred in the vicinity of Batticaloa, Ceylon.
${ }_{3}$ Suspected.
4 Reports imcomplete.
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
[C Indicates cases; $D$, deaths; $P$, present]

| Place | $\begin{gathered} \text { Dec. } \\ 29, \\ 1936- \\ \text { Jan. } \\ 25, \\ 1936 \end{gathered}$ | Jan. 28Feb. 29. 1936 | $\begin{aligned} & \text { Mar. } \\ & 1-28, \\ & 1836 \end{aligned}$ | Mar. 20-Apr. 25, 1936 | Week ended- |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | May 1936 |  |  |  |  | June 1936 |  |  |  | July 1936 |  |  |  |
|  |  |  |  |  | 2 | 9 | 16 | 23 | 30 | 6 | 13 | 20 | 27 | 4 | 11 | 18 | 25 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Argentina ${ }^{3}$ (see also table below): Bahis Blanoa (vicinity |  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Azores. (See table below.) <br> Basutoland. (See also table below).........-................. <br> Belgian Congo. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| British East Africa: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Kenya | 10 | 22 | 9 | 11 | 8 | 2 | 21 | 5 | 6 | 9 | 11 | 12 | 7 | 4 | ---- | --- | $\infty$ |
|  | 7 44 40 | 4 | 5 68 68 | .57 | 23 | 17 | 43 | 42 | 28 | 31 | 16 |  | 29 | 23 | 24 | - | --.---- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  Colombo |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Colombo. $\qquad$ Plague-infected rats. $\qquad$ | 10 | 6 $\mathbf{3}$ 2 | 8 8 3 | 3 8 8 | ( |  | 1 |  | 1 | - | 3 3 2 | ------ |  | $\cdots$ | 1 | 2 | ------- |
|  |  |  |  |  |  |  | 3 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 1 | ----- |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Weligama |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{aligned} & 726 \\ & 728 \end{aligned}$ | 998 990 | 700 | 604 | 122 | 107 | - |  |  |  |  |  |  |  |  |  |  |
| Eeuador: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Daule $\qquad$ Gunyaquil. |  | 6 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Plague-infected rats | $\begin{aligned} & 6 \\ & 2 \end{aligned}$ | 8 | -----1 | 1 |  |  |  |  |  |  |  | 1 |  |  | 8 | 1 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\mathbf{P}$ |  |  |
|  | 6 | 9 | 18 | 18 | 1 | ----1- |  |  |  | 2 |  |  |  |  |  |  |  |
|  | 1 | 2 | 1 | 1 | 1 |  |  | 1 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |


| Hawail Territory: Plague-infected rats: Hawail Island-Hamakua district:? <br> Hamakua Mill. |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Paauhau Sector ${ }^{\text {B }}$ |  |  |  |  | 2 |  |  |  |  |  |  |  |  |  |  | 2 |  |
|  |  | 1 |  | 4 |  |  |  |  |  |  |  |  |  |  |  | 2 |  |
|  | 2,168 | 3,382 | 3, 543 | 2,334 | 350 | 154 | 63 | 34 |  |  |  | 52 | 24 |  |  |  |  |
|  | 1,144 | 1,726 7 | 1, 669 | 1, 225 | 192 | 115 | 55 2 | 24 | 20 1 | 28 | 18 | 34 | 14 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 | 4 | 3 |  |
|  | 99 | 169 | 125 | 68 |  | 4 |  |  |  |  |  | 4 |  |  |  |  |  |
| Bombay....................................................... ${ }^{\text {d }}$ | 61 | 110 | 70 | 47 | 3 | 2 |  | 1 |  |  | ----- | 2 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |
|  | 194 | 584 | 456 | 487 | $45^{-1}$ | 6 | 1 |  |  |  |  |  |  | 1 | 1 | 2 | 6 |
|  | 42 | 29 | 5 44 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 28 | 11 | 44 38 | 12 | 1 |  | 2 1 | 2 | 1 |  |  |  |  |  | 2 |  |  |
|  |  | 1 | 14 | 95 | 56 | 1 | 8 | 7 |  |  |  |  |  |  |  |  |  |
| Rangeon................................................... ${ }^{\text {D }}$ |  |  | 7 | 53 | 36 | 1 | 7 | 3 |  |  |  |  |  |  |  |  |  |
| Plague-infected rats....... |  | 5 | 2 |  |  | 3 |  | 2 |  |  |  | 2 |  |  |  |  |  |
| Indochina (see also table below): <br> Longxuyen. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
|  | 1 | 1 |  |  |  | 1 |  |  |  |  | 1 | --- |  |  |  |  |  |
|  | 1 |  |  | 1 |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 2 |  |  |  | 4 |  |  |  |  |  |  |  |  |  |
| Madagascar. (See table below.) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 3 | 1 |  |  |  |  | 3 |  |  |  |  |  |  |  |
| Peru. (See table below.) D |  |  |  | 2 | -.-.-- |  |  |  |  | 1 |  |  |  |  |  |  |  |
| Senegal. (See table below.) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| United States: <br> Union of South Africa................................................................... | 44 | 114 | 41 | 10.8 |  | 103 |  | 103 |  | 1017 |  | 1015 | 1 | 101 | 1 |  |  |
| United States: <br> California: |  |  |  |  |  | , |  | 03 |  | 17 |  | 15 |  | 101 |  |  |  |
| Lassen County-Plague-infected squirrels. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Modoc County-Plague-infected squirrels |  |  |  |  |  |  |  |  |  | Pa | 1 |  | 43 | 1 |  |  |  |
| Monterey County .............................- |  |  |  |  |  |  |  |  |  | P |  | 7 | 112 | 3 | 1 |  |  |
| Santa Cruz County-Plague-infected squirrels |  |  |  |  |  |  |  |  |  |  |  | 21 | 1129 | 5 |  |  | 6 |
| Ventura County-Plague-infected |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |

7 During the week ended Aug. 8, 1936, 2 plague-infected rats were reported at Hama-
kua District, Island of Hawaii, Hawaii Territory. 8 Plague-infected rats have also been reported at Paaukau Sector, Hamakua District,
Island of Hawaii, Hawaii Territory, as follows: Week ended Aug. 8, 1936, 1 rat, and week ended Aug. 15, 1986, 1 rat.
and 7 lote of plague-infected fieas in Santa Cruz County, Calif., were also reported.
Information dated Aug. 5, 1936, states that 4 cases of plague had been reported at Salta
Province and 1 case at Tucuman Province, Argentina.
Includes 1 suspected case
Brazil. On July $29,1936,23$ cases of pneumonic plague, with 18 deaths, were reported
${ }^{6}$ During the period Jan. 1 to Feb. 20, 1036, 7 cases of plague were reported at Daule and vicinity, Ecuador.
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued PLAGUE-Continued
[O indicates cases; D , deaths; P ,


[^7][C indicates cases; $D$, deaths; $P$, present]

ChOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued SMALLPOX-Continued
[C indicates cases; D, deaths; P, present]


ривाप!
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued


CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued.
[C indicates cases; D, deaths; P, present]


CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued.

| Place | $\begin{aligned} & \text { Jan- } \\ & \text { uary } \\ & 1936 \end{aligned}$ | $\begin{gathered} \text { Feb- } \\ \text { ruary } \\ 1936 \end{gathered}$ | $\begin{gathered} \text { March } \\ 1936 \end{gathered}$ | $\underset{1936}{\text { April }}$ | $\begin{aligned} & \text { May } \\ & 1936 \end{aligned}$ | ${ }^{\text {June }}$ | Place | $\begin{aligned} & \text { Jan- } \\ & \text { uary } \\ & \text { 1936 } \end{aligned}$ | $\begin{gathered} \text { Feb- } \\ \text { ruary } \\ 1936 \end{gathered}$ | $\underset{1936}{\substack{\text { March }}}$ | ${ }^{\text {April }}$ | $\begin{gathered} \text { May } \\ 1936 \end{gathered}$ | $\begin{aligned} & \text { June } \\ & 1936 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 135 | 115 | 110 | 75 | 33 | 48 | Mexico (see also table above)-Con. | 1 |  |  |  |  |  |
| Chosen............................- | 51 | 128 | 259 | 312 | 225 |  | Puebueblat..........................- |  | 2 | 3 | 3 | 3 |  |
|  | 14 | 25 | 219 | 99 | 49 |  | Queretaro State - .-.............. C | 3 |  |  |  | 1 |  |
| Finland.......................... C |  |  | 5 | 112 | 10 |  | San Luis Potosi State: San Luis |  |  |  |  |  |  |
| Greece (see also table above).......- ${ }_{\text {C }}^{\text {C }}$ | $\begin{aligned} & \mathbf{5} \\ & 9 \end{aligned}$ | $\begin{array}{r}7 \\ \hline\end{array}$ | 6 | \% ${ }^{5}$ | 113 | $\begin{array}{r}4 \\ 59 \\ \hline\end{array}$ | Potosi | 8 | 6 | 6 1 | 3 | 3 |  |
| Latvia...................................... |  |  |  |  |  |  | Morocco (see also table above)..... ${ }_{\text {c }}$ | 45 | 30 | 7 | 45 | 28 |  |
| Mexico (see also table above): |  |  |  |  |  |  | Panams Canal Zone................ ${ }^{\text {C }}$ | 2 | 1 | 1 |  |  | 2 |
| Aguascalientes State: Aguascali- entes |  | 5 | 5 | 5 | 5 |  | Peru_............................. ${ }_{\text {C }}^{\text {C }}$ | 143 1 | 103 1 | 118 | 103 | 118 |  |
| Durango State...................... |  | 1 | 1 |  | . |  | Rumania............................. | 572 | 905 | 1,581 | 1,587 | 1,143 |  |
| Guanajuato State...-.......... C |  |  | 56 | 2 |  |  | Turkey............................... C | 33 | 51 | 33 | 79 | 39 |  |
| Leon | 7 | 16 | 20 |  |  |  | Istanbul.-.-.-.-.-.-...-...... $\mathbf{C}$ | 5 | 4 | 4 | 1 | 1 |  |
|  |  |  | 15 | 6 | $\begin{aligned} & 6 \\ & 2 \end{aligned}$ | ---....- | Union of South Africa: <br> Cape Province. $\qquad$ C |  |  |  | 48 |  |  |
| Mexico, D. F-.................. ${ }^{\text {C }}$ | 86 | 73 | 52 | $40^{-}$ |  |  |  | 7 | 2 | 3 | 1 | 2 |  |
| Mexico City................ | 75 |  |  | 20 | 28 |  | Orange Free State....-.....-.- | 17 | 21 | 5 | 18 | 10 |  |
|  | 22 |  |  |  | 15 |  | Transvaal...................... ${ }_{\text {C }}$ | 1 | 13 | 3 | 3 |  |  |
| Oaxaca State...-.............- C | 1 | 2 |  |  |  |  | Yugoslavia.-.......-.-............... ${ }^{\text {C }}$ | 131 | 80 | 113 | 108 | 125 |  |

yELLOW FETER
[C indicates cases; D, deaths; P, present]

| Place | 29, 1935, Jan. 25, 1936 | $\begin{gathered} \text { Jan. 26- } \\ \text { Feb.29, } \\ 1938 \end{gathered}$ | $\begin{aligned} & \text { Mar. } \\ & \text { 1-28, } \\ & 1936 \end{aligned}$ | Week ended- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | April 1936 |  |  |  | May 1936 |  |  |  |  | June 1936 |  |  |  | July 1836 |  |
|  |  |  |  | 4 | 11 | 18 | 25 | 2 | 9 | 16 | 23 | 30 | 6 | 13 | 20 | 27 | 4 | 11 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | ---- |  | -.... |  |  |  |  |  | $1-$ |  |  |  |  |  | - |
|  |  | 2 | 1 |  | 1 |  | 1 |  |  |  |  |  |  |  | 1 |  |  |  |
|  | 8 | 11 | 7 |  | 1 |  |  | 1 |  |  | 3 | 1 | 1 |  |  |  |  |  |
|  | 8 | 11 | 7 |  | 1 | 1 |  | 1 |  |  | 3 | 1 | 1 | - |  |  |  |  |
|  |  | 9 23 | 19 35 | : ${ }_{3}^{1}$ | 2 |  |  | 1 | 1 | 6 | 6 | 2 | 2 | 3 | 1 |  |  | $\cdots$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Dahomey |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | -- |

[^8]
[^0]:    ${ }^{1}$ From the Office of Statistical Investigations, U. S. Public Health Service. These summaries include only the eight important communicable diseases for which the Public Health Service receives weekly telegraphic reports from the State health officers. The numbers of States included for the various diseases are as follows: Typhoid fever, 48; poliomyelitis, 48; meningococcus meningitis, 48; smallpox, 48; measles, 47; diphtheria, 48; scarlet fever, 48: infiuenza, 44 States and New York City. The District of Columbia is counted as a State in these reports.

[^1]:    ${ }^{2}$ See Collins, Selwyn D., and Gover, Mary: Maximum temperatures and increased death rates in the drought area, 1934. Public Health Reports, Aug. 31. 1934, p. 1015.

[^2]:    ${ }^{1}$ From the Office of Child Hygiene Investigations, United States Public Health Service. Acknowlodgment is made to the Bureau of Public Roads, United States Department of Agriculture, for supplying by State and by year the number of antomobiles registered, and the number of gallons of gasoline consumed by automobiles.

[^3]:    Includes passenger automobiles, taxis, busses, motor trucks, and road tractors.

[^4]:    ${ }^{1}$ From the Industrial Hygiene Laboratory of the Office of Industrial Hygiene and Sanitation, U. $\mathbf{S}_{6}$ Public Health Service.

[^5]:    See footnotes at end of table.

[^6]:    ${ }^{1}$ No report for current month.
    ${ }^{2}$ Not reporting.
    a Includes only those cases that enter the clinics conducted by the State department of health.
    4 Only cases of syphilis in the infectious stage are reported.
    ${ }^{1}$ Reported by Jefferson Davis Hospital. Physicians are not required to report venereal diseases.

    - Reported by Social Hygiene Clinic.

[^7]:    13 During the week ended July 25, 1986, 158 fieas and 26 lice taken from 7 marmots (ground hogs) shot at the head of Small Horn Canyon, Beaverhead County, Mont., Weic
    roported plague infected.
    is During the week ended Ang. 1, 1936, 1 plague-infected marmot (ground hog) was reported in Beaver County, Utah. ${ }^{4}$ u From Jan. 1 to Mar. $16,1838$.

[^8]:    Yellow fever has been reported in Bolivia as follows: For the month of February, 2 cases; March, 10 cases; April, 1 case; May, 1 case; June, 2 cases.
    i Yellow fever has also been reported in Brazil as follows: Parana State, Feb. 16-25, 1936,5 cases, 5 deaths; Sao Paulo State, no date given, 3 cases and 4 deaths. Mar. $24-81,1936, ~$
    ${ }^{\text {Includes }} 1$ case of yellow fever reported in the city of Sao Paulo, Brazil.

